
[Tafa, 3(11): November, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [597]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

Parallel Programming with OPENMP
Igli Tafa, Erlind Çuka, Julian Fejzaj

Informatics Engineering Department, Faculty of Information Technology, Polytechnic University of

Tirana

Informatics Department, Faculty of Natural Science, University of Tirana

Abstract
In this paper we will make an experimental description of the parallel programming using OpenMP. Using OpenMP,

we achieve a high performance parallelizing the code into threads.

We will see the difference when a simple code which calculates the average of a vector will be executed sequentially

and in parallel. We will calculate the total execution time, and will monitor CPU loading while is running one or

another.

I chose this topic because I wanted to be more familiar with multi-threaded and programming in parallel. More and

more, parallel programming is developing rapidly. So understanding of this programming would be good investment

in my career.

Keywords: OpenMP, CPU loading, parallel programming

 Introduction
As CPU speeds no longer improve as significantly as

they did before, multicore systems are becoming

more popular.

Parallel programming is the execution of small unit

called threads at the same time, increasing the speed

of execution. But how threads are created? How they

operate? When they finish their work?

Once a program starts executing, then automatically

create a process which is responsible for the progress

of the program. The newly created process creates a

thread which is called the master thread. Only the

master thread can create other thread if are necessary

in program, giving each one a small task to do. Once

they finish their tasks they are terminated leaving

only the master thread.

Figure 1. Execution of threads

OpenMP is very easy to use. The same code is used

in serial and parallel programming, by equating the

distribution of load. It runs only in shared memory.

Each thread has its private memory and its stack.

They have the right te access the memory, which can

be used as communication path between threads.

OpenMP use fork and join model during execution of

threads.

http://www.ijesrt.com/

[Tafa, 3(11): November, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [598]

Figure 2. Fork- Join Model

Fork: Master thread creates a team of threads that

depends from user or code. Each of these threads

make a job independently, accessing memory at the

same time.

Join: After threads finish their jobs they are

terminated leaving only the master thread.

How many threads do I need?

In general, the number of threads required in a

program, is limited to the number of CPUs.

Whenever threads are created, a little time is taken to

create a thread and when they finish, they join the

master thread. If the problem is small, and we have a

computer where the number of CPUs is less than the

number of threads, the execution time will be longer

using threads. So we have to make a deal with the

numbers of CPUs and the threads that we are using.

OpenMP is an Application Program Interface (API)

which is used for creating multi-threaded, in shared

memory parallelism. It has its libraries where are

located different functions that it use.

Related works
When hardware development is nearing its end,

software development is required. Numerous

methods have been developed to parallelize programs

using as much CPU and reducing the total time of

execution.

The OpenMP standard specifications began in 1997

but first ideas had started earlier. In its beginnings, in

parallel programming languages was part of

FORTRAN and C/C++ where the implementation

was made in parallel. In 2005 was realised the first

program OpenMP with an API of its own. Since then,

it has been developed even more to reach the

standards of present days [1].

Many methods have been developed to parallel

programming. Each of them has its own features and

characteristics of parallelism conception, but the

researchers believe that the best way for parallel

programming is OpenMP.

David J.Kuck, Director of Parallel and distributed

Solutions, Intel Corporation, when he was

interviewed said: “I hope that readers will learn to

use the full expressibility and power of OpenMP”.[2]

Since OpenMP research is often complicated by the

tight coupling of the compiler translation and the

runtime system, we present a set of rules to define a

common OpenMP runtime library (XOMP) on top of

multiple runtime libraries. [3]

Another work that I found interesting and would like

to mention is the paper [6]. Here is introduced the

difference between OpenMP and MPI for execution

on distributed memory systems. Also it is discussed

how to evaluate the performance achieved by

OpenMP applications.

A paper [8] is made for Hybrid MPI/OpenMP

Parallel Programming. This is a hybrid model to

solve the problems of OpenMP and MPI, where is

explained the creation of a hybrid model which takes

advantages of both models above.

Other researchers are made in timing behaviour, but

it is not the purpose of this paper.[4]

Nowadays, not only CPU but also GPU goes along

the trend of multi-core processors so implementing

OpenMP presents not only an opportunity but also a

challenge at the same time. [5]

Theory of experiment
We are going to create two programs that calculate

the average of the vector. First we are writing in

serial, meaning that each part of the code is run

sequentially. Second we are writing in parallel, using

threads. For every program we are calculating the

time it needs to be executed and we will see the

difference when using threads and without using

threads.

- Environment

We are operating in Ubuntu 12.04. I find it more

familiar. My computer has these parameters

 Intel Pentium Core 2 (2.04 GHz,800Mhz)

 4 GB DDR2

 250 GB HDD

 32 bit operating system

- Programming Languages

http://www.ijesrt.com/

[Tafa, 3(11): November, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [599]

I choose to work with C, because I am more familiar

with this language, and OpenMP supports very well

this language.

Experimental phase
The experimental phase has to do with finding the

average in a vector. We have selected a vector with

predetermined number of elements. For each iteration

we will collect every number of vectors. At the end

of iteration, we will calculate the average by dividing

the sum with the number of elements.

The parallelization is done using #pragma omp

directory. We will determine the number of the

thread that in this case is three. Number of threads is

determined by function:

omp_get_num_threads ().

To determine execution time we will calculate the

time at the beginning and end of the program, using

this function:

omp_get_wtime ();

Figure 3. Flowchart of algorithm

After we have written both codes, we are going to run

them in terminal. I installed OpenMP library with the

command

sudo apt-get install gcc -4.6

This command deals with the installation of the

library by itself.

To execute the codes we follow these steps:

 Open Terminal

 cd Desktop

 gcc –fopenmp Averag.c –o Averag

 ./Averag

 gcc –fopenmp ParallelAverag.c –o

ParallelAverag

 ./ParallelAverag

After we have written these codes we will see these

results:

Figure 4. Execution of programs

As we see from the terminal window, the execution

in parallel is faster than serial. In our program is

about 2 times faster. The result is the same in both of

codes. But let’s see the CPU loading while programs

are executing.

Figure 5. The load of CPU in parallel

http://www.ijesrt.com/

[Tafa, 3(11): November, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [600]

As seen from the figure above, in parallel

programming we have a maximum loading of CPU

(100%). Each thread is executed in different core of

CPU so the parallelized program is faster. While in

sequential programming one core of CPU is loading

in time. So we do not have an even distribution of

load.

Conclusions
Interpreting the results of experimental part, so

comparing the two programs, one in serial and the

other in parallel, there is no doubt to use the parallel

programming. But not in all cases should be used. In

those cases where programs are small and have a few

cycles, the creation and destruction of threads will

give us greater delays in execution, than using it in

serial. So we have to make a deal with the resources

of hardware and the source code that will be

executed.

In our program we saw how the total time of

execution is two times faster in parallel than serial

programming. Using threads, both of cores in CPU

stay full of charging, using hardware resources as

well as possible.

Future work
The main reason why I started this work was because

I was very interested in parallel programming. It has

a large spreading nowadays.

As the number of cores in a CPU is increased, the use

of threads will also grow. Time execution is the most

critical point nowadays. In my future work I would

like to make a review of parallel programming,

comparing in different methods, such as Message

Passing Interface.

References
1. OpenMP 4.0 Specifications Released. The

OpenMP API specification for parallel

programming, Jul 23, 2013

2. Using OpenMP by Barbara Chapman,

Gabriele Jost and Ruud van der Pas 2008,

Massachusetts Institute of Technology

3. A ROSE-Based OpenMP 3.0 Research

Compiler Supporting Multiple Runtime

Libraries, By Chunhua Liao Daniel J.

Quinlan , Thomas Panas and Bronis R. de

Supinsk, Center for Applied Scientific

Computing Lawrence Livermore National

Laboratory Livermore, 2010

4. Time Behavior Intel® Fortran Compiler XE

13.1 User and Reference Guides, 26 March

2013

5. Comparison of OpenMP & OpenCL Parallel

Processing Technologies By Krishnahari

Thouti 2012

6. Introduction to OpenMP By Blaise Barney,

Lawrence Livermore National Laboratory, 1

March 2010

7. Developing Parallel Programs — A

Discussion of Popular Models : An Oracle

White Paper September 2010

8. Communication Characteristics and Hybrid

MPI/OpenMP Parallel Programming by

Georg Hager Gabriele Jost Rolf

Rabenseifner Proceedings of the 2009 17th

Euromicro International Conference on

Parallel, USA

9. Proceedings of the 5th International

Workshop on OpenMP, Berlin, Heidelberg,

Springer-Verlag (2009) Liao, C., Quinlan,

D.J., Willcock, J.J., Panas

Appendix
Below is the source code for serial and parallel

programming:

Serial Programming

#include<stdio.h>

#include<stdlib.h>

#include<time.h>

#include<omp.h>

#define N 500000

float A[N];

int main(void)

{

float avg=0,sum=0;

float start_time,end_time;

long j,x=0; int y=0;

start_time=omp_get_wtime();

for(j=0;j<N;i++)

{A[j]=j;

sum=sum+j;

avg=sum/j;

for (x=0;x<100;x++)

y=x*0.55;

}

end_time=omp_get_wtime();

printf("Average is=%f\n",avg);

printf("Calculation :%f seconds\n", end_time-

start_time);

}

http://www.ijesrt.com/

[Tafa, 3(11): November, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [601]

Parallel Programming

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <omp.h>

#define N 500000

#define NUM_THREAD 3

float A[N];

int main(void)

{

float sum=0, avg=0;

float start_time,end_time;

long j,x=0;

int y=0;

int nthr;

float th_max[NUM_THREAD]={0.0,0.0,0.0};

start_time=omp_get_wtime();

#pragma omp parallel

private(j,x,y,sum,avg),shared(A,th_max)

{

#pragma ompfor

for(j=0;j<N;j++)

A[j]=j;

nthr=omp_get_num_threads();

#pragma omp for // creates some new threads

for(j=0;j<N;j++)

{

sum=sum+A[j];

for (x=0;x<100;x++)

y=x*0.55;

}

avg=sum/N;

}

th_max[nthr]=avg;

for(i=0;i<NUM_THREAD;i++)

if(avg<th_max[i])

avg=th_max[i];

end_time=omp_get_wtime();

printf("Average is=%f\n",avg);

printf("Calculation :%f seconds\n", end_time -

start_time);

http://www.ijesrt.com/

